Sale!

Assignment 2 CMPT 215

$30.00

Category:
Rate this product

Assignment 2
CMPT 215

Total: 65 marks
Problem 1.
(8 marks) Add the following, indicate if there is a type of overflow or carry
over for a 8 bit binary.
i 12 + 10
ii 01001100 + 00111110
iii 10010000 + 11111111
iv 4 + −13
Problem 2.
(8 marks) Subtract the following, indicate if there is a type of overflow or
carry over for a 8 bit binary.
i 00111010 − 00011111
ii 9 − 10
iii 00001010 − 11111111
iv 4 − 13
1
Problem 3.
(12 marks) Multiply the following, indicate if there is a type of overflow or
carry over for a 8 bit binary.
i 00111010 × 00011111
ii 9 × 10
iii 01100111 × 00001111
iv 11010100 × 11110101
Problem 4.
(6 marks) Divide the following, indicate if there is a type of overflow or carry
over for a 8 bit binary.
i 01001100/00000100
ii 10101111/00001111
iii 11010100/11110101
Problem 5.
(8 marks) Convert the following to IEEE 754 single precision binary floating
point representation for each of the following numbers.
i −3.96875
ii −1.5
iii 1.1 × 10−126
iv 2.8 × 106
2
Problem 6.
(8 marks) Convert the following IEEE 754 single precision binary floating
point values to base10 number.
i 0100 0000 0100 0000 0000 0000 0000 0000
ii 0100 0001 1010 0000 0000 0000 0000 0000
iii 1111 1111 1000 0000 0000 0000 0000 0000
iv 1100 0001 0101 1010 0000 0000 0000 0000
Problem 7.
(10 marks) Fill out the following table for the following MIPS instructions,
assume that it starting at address 4000.
loo p : ben $s0 , $s1 , out
sw $s2 , 4 ( $ s1 )
addu $s1 , $s1 , $ t0
j loo p
out : o r i $t2 , $s7 , 3
Fields
Instruction Format 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
loop: bne $s0,$s1,out
sw $s2,4($s1),out
addu $s1,$s1,$t0Assignment 2
CMPT 215

Total: 65 marks
Problem 1.
(8 marks) Add the following, indicate if there is a type of overflow or carry
over for a 8 bit binary.
i 12 + 10
ii 01001100 + 00111110
iii 10010000 + 11111111
iv 4 + −13
Problem 2.
(8 marks) Subtract the following, indicate if there is a type of overflow or
carry over for a 8 bit binary.
i 00111010 − 00011111
ii 9 − 10
iii 00001010 − 11111111
iv 4 − 13
1
Problem 3.
(12 marks) Multiply the following, indicate if there is a type of overflow or
carry over for a 8 bit binary.
i 00111010 × 00011111
ii 9 × 10
iii 01100111 × 00001111
iv 11010100 × 11110101
Problem 4.
(6 marks) Divide the following, indicate if there is a type of overflow or carry
over for a 8 bit binary.
i 01001100/00000100
ii 10101111/00001111
iii 11010100/11110101
Problem 5.
(8 marks) Convert the following to IEEE 754 single precision binary floating
point representation for each of the following numbers.
i −3.96875
ii −1.5
iii 1.1 × 10−126
iv 2.8 × 106
2
Problem 6.
(8 marks) Convert the following IEEE 754 single precision binary floating
point values to base10 number.
i 0100 0000 0100 0000 0000 0000 0000 0000
ii 0100 0001 1010 0000 0000 0000 0000 0000
iii 1111 1111 1000 0000 0000 0000 0000 0000
iv 1100 0001 0101 1010 0000 0000 0000 0000
Problem 7.
(10 marks) Fill out the following table for the following MIPS instructions,
assume that it starting at address 4000.
loo p : ben $s0 , $s1 , out
sw $s2 , 4 ( $ s1 )
addu $s1 , $s1 , $ t0
j loo p
out : o r i $t2 , $s7 , 3
Fields
Instruction Format 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
loop: bne $s0,$s1,out
sw $s2,4($s1),out
addu $s1,$s1,$t0
j loop
out: ori $t2,$s7,3
Problem 8.
(5 marks) Design and show the truth table for Ex-Nor Gate using only NOT,
AND and OR gates. EX-Nor game is a digital logic gate that is the reverse
or complementary form of the Exclusive-OR function.
Bonus:
Problem 9.
(3 marks) Name two universal Quantum circuits and one error correction
gate used in Quantum computers.
3
j loop
out: ori $t2,$s7,3
Problem 8.
(5 marks) Design and show the truth table for Ex-Nor Gate using only NOT,
AND and OR gates. EX-Nor game is a digital logic gate that is the reverse
or complementary form of the Exclusive-OR function.
Bonus:
Problem 9.
(3 marks) Name two universal Quantum circuits and one error correction
gate used in Quantum computers.
3

Open chat
Need help?
Hello
Can we help you?